
Supplementary Text

S1 Data

S1.1 mRNA-Seq data

Sequencing reads from both MAQC-2 and MAQC-3 experiments have been deposited to the short-read

archive under the accession number, SRA010153.1

The calibration method used in Bustard for quality-scoring of base-calls is highly relevant in terms of

experimental design. In the auto-calibration method, base-calls are scored in a manner that is similar to

the phred base-caller [17]. An alternative, recommended by Illumina, is to reserve one control lane per

flow-cell for sequencing DNA, typically bacteriophage phi X genomic DNA [15].

Bustard also provides a variety of read quality measures. For a given cluster, the chastity ck at cycle k is

defined as the highest of the four fluorescence intensities divided by the sum of the highest two intensities.

The purity filter (PF) discards any read for which the chastity at any of the first 12 sequencing cycles is

less than 60%, i.e., min1≤k≤12 ck < 0.60 [15, Supplementary Information, p. 6]. For the MAQC-2 and

MAQC-3 datasets, the percentage of reads passing the purity filter (out of the total number of clusters)

varies between 50% and 76% per lane. Summaries of the Genome Analyzer output are provided in Tables

S1 and S2.

We used Bowtie [16], Version 0.10.1, to align reads to the genome (H. sapiens, NCBI 37.1 assembly). We

used a strict alignment policy, which enforces a strong definition of uniqueness: a perfect match is a read

that perfectly matches a position and does not match elsewhere, even when allowing up to two mismatches.

In this regard, we minimize the chance that a perfect match read is a read with an error that happens to

perfectly match elsewhere. The Bowtie command for implementing this mapping strategy is:

-r -v 2 -a -m 1 -p 8 --quiet h_sapiens_37_asm

Mapped reads were classified into the following three nested categories: (1) purity-filtered perfect match

(FPM) reads, that passed the purity filter and mapped uniquely as described above; (2) purity-filtered

mismatch (FMM) reads, that passed the purity filter and mapped with either 0, 1, or 2 mismatches; (3)

mismatch (MM) reads, that mapped with either 0, 1, or 2 mismatches, regardless of purity filtering.

As a result of the above pre-processing steps, we therefore have six sets of mapped reads, corresponding to

two calibration methods (auto-calibration and phi X calibration) and three mapping stringencies (FPM,

FMM, and MM). In our main analysis, we focus on phi X-calibrated, purity-filtered reads that map

uniquely to the genome, with up to two mismatches (FMM).

31



Table S1: MAQC-2: Pre-processing summary. The table reports summaries from Illumina’s standard
Genome Analyzer pre-processing pipeline: Firecrest image analysis and Bustard base-calling [15]. “Yield
(kb)”: Product of number of purity-filtered clusters and number of bases per cluster (per lane). “Raw clus-
ters”: Average ± standard deviation of per-tile number of clusters detected by the image analysis module
of the pipeline. “PF clusters”: Average ± standard deviation of per-tile number of detected clusters that
meet the purity filtering criterion. Note that the fifth lane in each flow-cell was reserved for sequencing phi
X genomic DNA.

Flow-cell Lane Biology Yield (kb) Raw clusters PF clusters
F2 L1 UHR 296866 128513 ± 8346 88353 ± 9043
F2 L2 Brain 277172 113931 ± 13407 81641 ± 13201
F2 L3 UHR 324216 134627 ± 9441 92633 ± 8700
F2 L4 Brain 294120 112663 ± 6475 84883 ± 5541
F2 L6 UHR 310230 131166 ± 8986 88637 ± 9422
F2 L7 Brain 283315 113651 ± 7401 80947 ± 8981
F2 L8 UHR 287474 122293 ± 12000 82135 ± 10298
F3 L1 Brain 203301 117128 ± 6695 58086 ± 16486
F3 L2 UHR 260693 135475 ± 7102 74483 ± 14256
F3 L3 Brain 273610 118160 ± 6825 78174 ± 10553
F3 L4 UHR 313353 136806 ± 7869 89529 ± 9365
F3 L6 Brain 288766 120813 ± 7309 82504 ± 9424
F3 L7 UHR 288312 136649 ± 7037 82374 ± 11148
F3 L8 Brain 243072 116163 ± 6596 69449 ± 10014

Note that, by mapping to the genome, we do not capture exon-exon junction reads, which would be

relevant in studies of alternative splicing. In any given lane, around 10% of the reads mapped to exon-exon

junctions. Additionally, the library preparation protocol does not allow consideration of strand-specific

counts, i.e., reads mapping to the forward and reverse strands are pooled.

S1.2 qRT-PCR data

For benchmarking purposes, we use the quantitative real-time polymerase chain reaction (qRT-PCR) data

of [13] to obtain distinct measures of gene expression (Gene Expression Omnibus (GEO), Series GSE5350,

www.ncbi.nlm.nih.gov/geo). In this TaqMan assay, a quantitative measure of template abundance is

provided by the threshold cycle (CT ), i.e., the number of PCR cycles at which one detects a significant

exponential increase in the fluorescence of a labeled TaqMan probe. The greater the threshold cycle, the

less abundant the template.

As described in [13], p. 1120–1121, for each of 997 protein-coding genes, between four (994 genes) and

eight (3 genes) CT measures were obtained for each of Brain and UHR. Due to annotation differences, of

the 997 genes assayed by qRT-PCR, 965 matched a unique UI gene. We find there is no systematic
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Table S2: MAQC-3: Pre-processing summary. Cf. Table S1 caption.

Flow-cell Lane Lib. Prep. Yield (kb) Raw clusters PF clusters
F4 L1 S3 258032 114634 ± 10132 79272 ± 13356
F4 L2 S4 334535 144311 ± 11288 96547 ± 10952
F4 L3 S3 311489 120708 ± 9614 88997 ± 9017
F4 L4 S4 354932 141855 ± 11771 101409 ± 8263
F4 L6 S3 316489 119383 ± 8989 90425 ± 7053
F4 L7 S4 336469 140959 ± 10373 97105 ± 7050
F4 L8 S3 278196 113575 ± 8529 79484 ± 8161
F5 L1 S5 251885 118150 ± 7715 81780 ± 8955
F5 L2 S6 364813 162401 ± 11096 105285 ± 4996
F5 L3 S5 324904 124526 ± 7446 92829 ± 3300
F5 L4 S6 371195 158799 ± 11354 106055 ± 3718
F5 L6 S5 314057 118976 ± 6562 89730 ± 2854
F5 L7 S6 357717 157457 ± 9475 102204 ± 4237
F5 L8 S5 288629 122585 ± 10022 82465 ± 8166

relationship between gene expression measures and mapping status.

Following [13], a detection limit of 35 was set on the raw CT values. For each type of biological sample

(Brain and UHR), genes were further classified as present (P) if they were detectable in at least three

fourths of the qRT-PCR assays and absent (A) otherwise. According to this criterion, 797 genes were

declared present in both Brain and UHR samples, 26 present in only Brain samples, 76 present in only

UHR samples, and 40 absent in both types of samples. The CT measures available from GEO were

normalized as in [13], separately for the Brain and UHR samples, using the POLR2A gene as a reference.

In what follows, the qRT-PCR expression measures are represented as

Yi,j ≡ ∆Ci,j × log 2, (S-1)

where ∆Ci,j = Ci,P OLR2A − Ci,j are POLR2A-normalized threshold cycles CT for protein-coding genes

j = 1, . . . , 939, in TaqMan assays i = 1, . . . , nj (nj = 8 for all but three genes that have nj = 16). The

qRT-PCR measures are originally on a log base-2 scale. Multiplication by log 2 transforms these measures

to the natural logarithmic scale used throughout. The qRT-PCR estimate of UHR to Brain expression

log-fold-change is the difference of averages: ȲUHR,j − ȲBrain,j .

S1.3 Affymetrix microarray data

Affymetrix microarray data were downloaded from GEO (GSE5350, MAQC AFX 123456 120CELs.zip).

To minimize variation across labs, we used data only from lab 1, i.e., AFX 1 [A—B][1-5].CEL$. Arrays
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were pre-processed using RMA [23] and then differential expression was determined by the R/Bioconductor

package limma [24], using the standard pipeline of lmFit and eBayes.

In order to match Affymetrix probesets with our UI genes, we used the R/Bioconductor package biomaRt,

which retrieves data from Ensembl, Version 55. In cases where multiple probesets matched to a single UI

gene, we took the median measurement for the log-ratio, standard errors, and p-values, so as not exclude a

large fraction of the microarray data.

S2 Defining genomic regions of interest

Using Ensembl, Version 55, annotation, we define a union-intersection (UI) gene as a composite gene

consisting of unions of constitutive exons (including UTRs) that do not overlap a coding or UTR region of

another gene. Specifically, for a given gene, a constitutive exon is defined as a set of consecutive exonic

bases (i.e., portion of or entire exon) that belong to each isoform of the gene of interest. We further

exclude any portion of such region that overlaps the coding or UTR region of any other gene, either

constitutive or alternative, on either strand (Figure SS1a). A gene model defined according to this

union-intersection principle can be viewed as representing all isoforms of a given gene. Reads are assigned

to a given gene if their 5’-end falls within the region, as depicted in Figure SS1b.

Figure SS2 examines basic features of the set of UI genes considered in the present article and built using

gene annotation from Ensembl (www.ensembl.org, Version 55). Figure SS4 displays an example gene and

its base-level read counts. In Figure SS3, observed counts for the UI genes are reported.

We also define an Ensembl gene as the union of all exons from a given gene, excluding regions which

overlap any other gene on either strand. Our definition of UI genes is clearly more restrictive than that of

Ensembl genes, as it retains only constitutive exons. The genome coverage of UI genes is 42,708,318

base-pairs, whereas the coverage of Ensembl genes is 82,020,267 base-pairs.

We call an Ensembl gene or a UI gene present, if it has at least one read in both Brain and UHR samples.

Filtered genes are defined as having at least 20 reads in both samples.

S3 Generalized linear models for gene-level counts

Consider J genes and let Xi,j denote the number of reads mapping to gene j in lane i. Sums of counts over

all lanes or genes are represented with the standard “·” symbol, e.g., Xi,· denotes total counts in lane i.

Generalized linear models (GLM) provide a flexible and extensible statistical inference framework for

mRNA-Seq. Though we focus on models with the log/Poisson link function [25], what follows may be
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applied using alternative link functions and distributions, such as the negative binomial.

We formulate a gene-level GLM for read counts Xi,j , such that log(E[Xi,j ]) = λa(i),j + θi,j , where

a(i) ∈ {1, . . . , A} is the biological group (e.g., Brain or UHR) corresponding to lane i, λa(i),j is the

parameter of interest representing the expression level of gene j in biological group a(i), and θi,j is a

nuisance parameter representing experimental effects, such as library preparation, flow-cell, and lane

effects. Suitable identifiability constraints need to be specified for each experimental design under

consideration, e.g.,
�

j exp(λa,j) = 1 for each biological group a.

Ultimately, the parameter of interest is the ratio of transcript counts in biological group a2 vs. a1, i.e., a

transcript expression fold-change. In the mRNA-Seq assay, each transcript is divided into a number of

fragments. As a result, the parameter exp(λa2,j − λa1,j) represents the ratio of the number of fragments for

biological group a2 vs. a1. Under certain assumptions for the library preparation process (concerning

fragmentation, in particular), it can be argued that transcript and fragment fold-changes are proportional,

with a single proportionality constant across all genes.

It is clear any reasonable model must normalize read counts to adjust for the large differences in

sequencing depths between lanes (or samples). This can be achieved by introducing a lane-level parameter,

δi, in the GLM,

log(E[Xi,j ]) = δi + λa(i),j + θi,j . (S-2)

Instead of fitting the above GLM jointly to all J genes (in the tens of thousands), it is equivalent to fit the

following log-linear regression model per gene,

log(E[Xi,j |di]) = log di + λa(i),j + θi,j , (S-3)

where di is a lane-level random variable, such as the total lane count Xi,·, and the offset log di is to be

treated as a quantitative covariate whose regression coefficient is set to one.

To evaluate the presence of experimental effects, we fit the model of Equation (1) with different choices of

θi,j that account for groupings of lanes into flow-cells (fc) or library preparations (prep), as well as

interactions of these effects with biological (bio) effects, where appropriate (see Table S4). We use

likelihood ratio statistics per gene to compare the fits of models with various combinations of effects, e.g.,

(1+bio+fc) vs. (1+bio). We also use χ
2 goodness-of-fit statistics to assess deviation from a particular null

model – again per gene (such an approach was also applied in [6], to assess goodness-of-fit for a particular

model of inter-lane variation).
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We note that by estimating a large number of parameters we risk overfitting and introducing noise into our

estimators. In this instance, however, our goal is an overall assessment of experimental effects. To correct

for such effects in practice and obtain reliable estimators of λa,j for specific genes, more sophisticated

approaches may be appropriate, such as pooling data across genes using empirical Bayes methods.

S4 Normalization

The total-count, upper-quartile, and POLR2A normalization procedures involve a choice of a global scaling

factor d, which is a vector of length equal to the number of lanes (14 in each of the two MAQC datasets).

For total-count normalization, the value di for lane i was the total number of mapped reads for lane i,

where mapped here means mapped to a genomic location. Upper-quartile normalization was based on the

constitutive gene counts, described above, but excluding any gene that had zero counts for all of the lanes.

Then for each lane, di was the upper-quartile (75 percentile) of all the gene counts in lane i. For POLR2A

normalization, di is the number of reads mapped to the constitutive regions of POLR2A for lane i. The

offset d is incorporated in GLM-based tests (i.e., the LLR and the t-statistics) as described below. We note

that the total-count offset corresponds to the maximum likelihood estimator of the parameter δi in the

GLM of Equation (S-2).

We rescale the offset vector d so that the sum of its elements is equal to the total count across all lanes

(roughly 67 million). This is done solely for the purpose of comparing normalizing factors and only affects

Fisher’s exact test, for which the distribution of the test statistic depends on the actual magnitude of d.

The GLM-based tests are unaffected, because differences in the overall magnitude of the normalizing scale

factor can be absorbed into an intercept term.1 In our implementation of Fisher’s exact test, d is acting as

observed data even though it is not (except in the case of total-count normalization). GLM clearly give a

more logical framework for allowing different choices of global normalization.

The final normalization considered is quantile normalization [18], as implemented in the R package

aroma.light [26]; the median across sorted lanes was chosen as the reference distribution. The normalized

data are rounded to produce integer values that can be used with each of the DE statistics described below.

S5 Differential expression statistics

Identifying genes that are differentially expressed between A conditions corresponds to testing the following

J per-gene null hypotheses: H0(j) : λ1,j = · · · = λA,j , where λa,j is the expression level of gene j in
1The GLM of Equations (S-2) and (S-3) do not include an intercept term, but this is just a matter of reparameterization.
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samples of type a. We evaluate three main types of DE tests.

• Log-likelihood ratio (LLR) statistics for GLM:

T
LLR
j = 2(lj(λ̂, θ̂)− lj(λ̂0

, θ̂
0))∼̇χ

2(A− 1), (S-4)

where lj denotes the log-likelihood function for the jth gene and (λ̂, θ̂) and (λ̂0
, θ̂

0) denote,

respectively, the maximum likelihood estimators (MLE) of the biological and experimental effect

parameters under the full model and null model.

• t-statistics for GLM (2 sample comparisons, A = 2):

T
t
j =

(λ̂2,j − λ̂1,j)− 0�
�Var[λ̂1,j ] + �Var[λ̂2,j ]

∼̇N(0, 1), (S-5)

where the variances of λ̂ may be estimated from (1) the standard GLM fitting procedure glm in R

[27], e.g., based on an estimator of the information matrix obtained from the Hessian of the

log-likelihood function, or (2) the delta method, where �Var[λ̂a,j ] = 1/
�

i I(a(i) = a)Xi,j (assuming

θi,j constant across samples).

• Fisher’s exact test is based on the 2×A contingency table created by cross-tabulating genes with

biological sample type (Brain and UHR). The Mantel-Haenszel test of conditional independence

within stratum extends Fisher’s exact test to account for a single additional experimental effect (e.g.,

flow-cell). In all cases, except quantile normalization, row 1 corresponds to the total number of reads

observed in the jth gene; in quantile normalization, it corresponds to the rounded

quantile-normalized value. For total-count normalization, row 2 corresponds to the lane totals less

the number of reads in the jth gene. In the case of POLR2A, upper-quartile, and quantile

normalization, pseudo-counts are generated to match the total number of reads (see Section S4). The

tests are implemented using the fisher.test and mantelhaen.test functions in R.

S6 Receiver operator characteristic curves

Receiver operator characteristic curves (ROCs) were based on the set of common genes for the sequencing

and qRT-PCR data. Additionally, only genes that were called present on both the qRT-PCR platform and

the sequencing platform were considered. For the sequencing data, this required that the genes have at

least one read in any of the 14 lanes of sequencing. For the definition of present/absence on the qRT-PCT
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platform, see Section S1 above. In the ROCs presenting microarray results, we further required the gene to

be present on the microarray platform.

Definition of DE based on qRT-PCR data Conceivably, every gene could be declared differentially expressed

at some cutoff, which means any “false positive” could be due either to noise, errors, or extremely high

sensitivity of the (sequencing or microarray) platform. Furthermore, the qRT-PCR measures of DE are

themselves imperfect, though generally accepted as the best available – they have very low levels of

variation and the variation is extremely uniform across genes. Rather than rely on the p-values from a test

statistic for differential expression in qRT-PCR, we instead remove the 12 genes with standard errors

greater than .25. In this manner, we focus on the more biologically relevant fold-change rather than the

standard errors. We divide the genes assayed by qRT-PCR into three sets, “non-DE”, “DE”, and “no-call”,

based on whether their absolute expression log-fold-change is less than a, greater than b, or falls within the

interval [a, b], respectively. We ignore the “no-call” genes when determining true/false positives/negatives.

In all of the plots presented here, a = 0.20, though lower values were also explored with no change in the

results.

To ensure that focusing on fold-change, as opposed to p-value, does not change our overall conclusions, we

examine the performance of both upper-quartile normalization and the different test statistics using the

qRT-PCR p-values to declare DE. A gene is declared DE based on the qRT-PCR if its Bonferoni adjusted

p-value is below 0.05 (out of a total of 722 genes common among three platforms). Table S3 compares the

DE calls, as determined using the Bonferoni adjusted p-value and log-fold-change cutoffs (see also Figure

SS9 for density plots). The non-DE calls made based on log-fold-change were also non-DE based on p-value

for all but 5 genes. Similarly, for DE calls, most of the genes called DE for the log-fold-change cutoff are

also DE for the p-value cutoff, especially for large values of log-fold-change. Finally, to validate the general

conclusions, we constructed ROC plots which demonstrate that, although shifted, the comparative

performance of the methods is the same as that determined by qRT-PCR log-fold-change. In Figure SS5,

upper-quartile normalization performs better than total-count normalization and likelihood ratio tests as

well as Fisher’s exact tests perform better than their t-statistic counterparts, recapitulating what we see in

the ROC curves based on log-fold-change cutoffs.

Definition of true and false positive rates Given a “DE” (positive, P) or “non-DE” (negative, N) call from

qRT-PCR, define a true positive (TP) as the event that the test of interest (based on either sequencing or

microarray data) calls a gene DE that qRT-PCR called DE and that the direction of DE agrees between
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Table S3: qRT-PCR gene agreement between cutoffs based on p-value and fold-change. Genes determined
DE by absolute log-fold-change as compared to genes declared DE by Bonferroni adjusted nominal p-values.

Bonferroni p-value
non-DE DE Total #

of genes> .05 ≤ .05

absolute
log-fold-change

non-DE < 0.2 89 5 94

no-call [0.2, 0.5] 50 42 92

DE
(0.5, 0.75] 26 79 105

(0.75, 2] 27 182 209
> 2 18 254 272

Total # of genes 210 562 772

the two assays. Let a false positive (FP) event occur when the test calls a gene DE that qRT-PCR called

non-DE (Table 1). We consider a true positive rate (TPR) defined as

Pr(TP|qRT-PCR is DE) =
Pr(TP, qRT-PCR is DE)

Pr(qRT-PCR is DE)

and estimated with
(# TP and qRT-PCR is DE)/(total # genes)

(# qRT-PCR is DE)/(total # genes)
=

TP
P

.

Note that this is not the standard definition of TPR, usually expressed in terms of TP, FP, TN, and FN.

We consider the standard definition of false positive rate (FPR),

Pr(FP|qRT-PCR is non-DE),

estimated with
(# FP and qRT-PCR is non-DE)/(total # genes)

(# qRT-PCR is non-DE)/(total # genes)
=

FP
N

.

S7 Experimental effects: Lane, flow-cell, and library preparation

We investigate various experimental effects for gene-level counts, including lane, flow-cell, and library

preparation effects. For this, we rely on the total-count normalization, which gives the best results in terms

of goodness-of-fit of the Poisson model for replicate lanes. Figure SS6 displays mean-difference scatterplots

of expression fold-changes vs. overall expression measures for lanes representing different combinations of

flow-cells, library preparations, and biological groups (Brain and UHR). It is immediately clear that the

magnitude of the differences between biological groups dwarfs any of the experimental effects.

39



Mean-difference scatterplots of log-fold-change vs. overall expression are preferable to scatterplots of

expression measures, as the latter often give a misleading impression of concordance between samples.

Replicate lanes Figures S6a and S6b show quantile-quantile (QQ) plots of χ
2 goodness-of-fit statistics for

the multiplicative Poisson model fit within sets of replicate lanes for each UI gene (GLM 1, Table S4).

Note that zero-read genes have undefined χ
2-statistics and are not plotted. Each QQ-plot is very close to

the 0, 1 line; in particular, at worst only the top 0.1% of genes (and less than 10 genes for many of the sets

of replicates) do not closely follow the null distribution – a remarkably good fit for non-simulated data.

When goodness-of-fit is assessed without correcting for differences in total number of reads, the results

unsurprisingly show lack-of-fit. Analogous QQ-plots stratified by read count for MAQC-3 (Figure SS7)

indicate that genes with a reasonable number of reads (average of 3 or more reads per lane) show excellent

fit; genes with fewer reads exhibit poor fit. This discrepancy most likely results from the breakdown of the

asymptotic χ
2 approximation.

Flow-cell and library preparation effects We assess whether different aspects of the experimental design

(flow-cell, library preparation) influence our ability to estimate the biological effects of interest. In Figures

S6c and S6d, we see that when we ignore flow-cell or library preparation designation, the QQ-plots

demonstrate lack-of-fit as compared to similar plots for replicate lanes. In particular, flow-cell and library

preparation QQ-plots show deviation for the top 1% and 5% of genes, respectively, whereas analogous plots

for replicate lanes only show deviation in the top 0.1% (if at all). Explicitly adjusting for flow-cell or

library preparation effects results in near linear QQ-plots.

Next, to assess the significance of technical effects compared to biological effects, we compare various

parameterizations of the log-linear regression model using likelihood ratio statistics (Table S4). The

count-stratified QQ-plots of Figure SS8a demonstrate that globally, the most significant differences

between models are related to biology, as opposed to flow-cell.

Figure 4 demonstrates that flow-cell effects are much smaller in magnitude than biological effects.

Although a direct comparison of library preparation effects to flow-cell and biological effects is not possible

(due to confounding and nesting in MAQC-2 and MAQC-3, respectively), the boxplots suggest that both

technical effects are much smaller than biological effects.

In summary, the above analysis suggests that there are both flow-cell and library preparation effects, but of

less significance and of smaller magnitude than biological effects. Ignoring flow-cell has only a minor impact

in detecting extremely small biological differences; almost none when genes have greater than 3 reads/lane.
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Table S4: Log-linear regression models. The following class of log-linear regression models are considered
separately for each gene j: log(E[Xi,j |Xi,·]) = log Xi,· + λa(i),j + θi,j . Each row in the table corresponds to
a different parameterization of the biological effect λ (bio) and experimental effect θ, to represent different
combinations of biological, library preparation, and flow-cell effects. Specifically, library preparation (prep)
and flow-cell (fc) effects are denoted, respectively, by βb(i) and γc(i), where a(i), b(i), and c(i) map lane i

to its corresponding biological, library preparation, or flow-cell group, respectively. Recall that in MAQC-2,
biological effects (λ) are confounded with library preparation effects (β), and in MAQC-3, library preparation
effects (β) are nested within flow-cell effects (γ). The gene index j is omitted to simplify notation.

Dataset Model Formula λa(i) θi # parameters Constraints

MAQC-2

1 1 0 α 1

λBrain = 0, γF2 = 02 1 + bio λa(i) α 2
3 1 + fc 0 α + γc(i) 2
4 1 + bio + fc λa(i) α + γc(i) 3

MAQC-3
5 1 0 α 1

βS3 = 0, γF4 = 06 1 + fc 0 α + γc(i) 2
7 1 + fc:prep 0 α + βb(i) 4

S8 Phi X calibration analysis

In each flow-cell, one lane out of eight was reserved for sequencing bacteriophage phi X genomic DNA and

used by Genome Analyzer’s base-caller Bustard for base-calling and quality-scoring [15, Supplementary

Information, p. 7]. This practice has important experimental design implications, in terms of sample size

and balance. We used the MAQC-2 dataset to investigate the impact of the calibration method (phi X

calibration vs. auto-calibration) at various levels of the analysis pipeline, including base-calling,

read-mapping, and (differential) expression inference.

S8.1 Base-calling and quality-scoring

We first examine the effect of the calibration method on base-calls by cycle and by lane (in base-calling, a

cycle refers to a position in a read, here, from 1 to 35).

The pseudo-color image in Figure SS10 illustrates that there is good overall agreement between phi X and

non-phi X-calibrated reads (less than 3% discrepancy). However, the discrepancy rate between the

base-calls for the two calibration methods varies between cycles (higher for later cycles) and between lanes

and flow-cells (higher for flow-cell F3). Furthermore, Figure SS11 shows that not all base substitutions are

equally likely, with phi X calls of ‘C’ being more frequently assigned another base by auto-calibration and

the ‘C’ to ‘G’ transversion being the most common substitution.

Overall, quality scores assessing the base-calls tend to be higher with auto-calibration. Figure SS12a shows
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per-cycle quality scores for phi X and non-phi X-calibrated reads averaged across the seven lanes of each

flow-cell. The quality scores for auto-calibration are generally higher at each cycle and, as previously

noted, quality degrades through cycle [15]. Flow-cell F3 generally has lower quality scores and much

steeper drops in quality for higher cycles. Additionally, Figure SS12b, which shows the difference in quality

scores by lane, demonstrates substantial variation in differences of quality scores between flow-cells and

between lanes within flow-cells. The differences in base-calling quality scores between flow-cells F2 and F3

may explain the flow-cell effects reported earlier on downstream gene expression measures.

S8.2 Absolute and relative expression measures

Next, we consider the impact of the calibration method on (differential) expression statistics, based on

purity-filtered perfect match (FPM) reads.

The significance of differences in estimates between the two calibration methods can be assessed by

comparing observed differences to a permutation distribution of differences obtained by randomly swapping

the auto-calibrated and phi X-calibrated sets of read counts for each of the 14 lanes. Such a permutation

scheme respects the joint distribution of gene counts within lane and the experimental design

(lane/flow-cell/library preparation/biological sample structure). The empirical cumulative distribution

function (ECDF) and scatterplots of permutation p-values in Figure SS13 suggest that, although small in

magnitude, the differences in absolute expression measures are significant, especially for ROI with large

read counts (Figure SS13, Panels (a) and (c)). However, differences in expression fold-changes between

UHR and Brain do not appear to be significant (Figure SS13, Panels (b) and (d)). Finally, in Figure SS14,

we note that, as expected, DE statistics determined using auto-calibration tend to be more extreme due to

the larger number of counts with auto-calibration. However, this difference is insubstantial for a majority

of genes.

In summary, while there are some differences between phi X and auto-calibration in the early stages of the

analysis pipeline, the differences in terms of differential expression are small. Unfortunately, we only have

two flow-cells from which to assess the impact of auto-calibration vs. phi X calibration. However, it seems

quite clear, using these two flow-cells, that auto-calibration is advantageous, as it yields more balanced

designs, frees up one lane per flow-cell, and produces a larger number of higher quality reads per lane.
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(a) UI vs. Ensembl genes
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(b) UI genes and read-counting

Figure SS1: Union-intersection and Ensembl gene models. Panel (a): Illustration of union-intersection
(UI) and Ensembl gene definitions for two genes (pink and blue) with multiple isoforms (see Section S2).
The original transcripts, as would be reported by Ensembl, are displayed in the top panel. Below are the
corresponding UI and Ensembl gene models. Note that because the genes overlap, the entire exon region is
removed, not just the overlap. Panel (b): Illustration of read-counting for a gene with two isoforms. Isoform
A has a shorter 3’-most exon as compared to Isoform B. The UI gene model includes the entire 3’-most exon
for Isoform A. In addition to reads originating from the constitutive portion of the UI gene, reads emanating
exclusively from Isoform B may also be counted.
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(b) Length by Ensembl annotation

Figure SS2: UI gene Ensembl annotation. Panel (a): Barplots of the distribution of UI genes by Ensembl
annotation. Panel (b): Boxplots of UI gene lengths by Ensembl annotation. Ensembl annotation categories
are sorted in decreasing order of their cardinalities; only categories comprising more than ten UI genes are
displayed (11 out of 25 categories).
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(b) Total-count normalization
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(c) Upper-quartile normalization
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(d) POLR2A normalization

Figure SS3: Distribution of UI gene counts. (a) Raw counts, (b) log counts after total-count normalization,
(c) log counts after upper-quartile normalization, (d) log counts after POLR2A normalization. The density
of quantile-normalized counts is the same for each lane and shown in yellow in panel (a). Brain samples are
shown in green and UHR samples are shown in purple.
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Figure SS4: Base-level read counts. The plot provides two representations of base-level read counts summed
across the seven Brain and seven UHR lanes for Ensembl Gene ENSG00000117362. Regions corresponding
to the union-intersection gene model and Ensembl transcripts are indicated by dark green and light blue
boxes, respectively. The top two read tracks (Brain, UHR) display numbers of reads with 5’-end at a given
base (Section S2). UI gene counts for the Brain and UHR samples are reported below the tracks; Ensembl
gene counts are in parentheses. The t-statistics for UHR vs. Brain differential expression are based on GLM
adjusting for flow-cell effects (1+bio+fc, Table S4). The second set of tracks (Brain-P, UHR-P) correspond
to a “pileup” representation of “overlap” counts, i.e., of numbers of reads overlapping a given base.
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(a) Offset comparison
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(b) Test statistic comparison

Figure SS5: Comparison of normalization and test statistics: p-value based ROC curves. ROC curves
comparing the performance of, (a) normalization procedure, and (b) test statistics, computed by declaring
genes DE using a .05 cutoff on the Bonferroni adjusted p-values, rather than log-fold-change. As before,
in addition to satistfying the p-value cutoff, to be declared a true-positive a gene must agree in the sign of
differential expression as described in Table 1.
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(a) MAQC-2: Replicate lanes (b) MAQC-2: Lanes across flow-cells

(c) MAQC-3: Lanes across library prep. (d) MAQC-2: Lanes across biological groups

Figure SS6: Mean-difference scatterplots of read counts across lanes, flow-cells, library preparations, and
biological groups. Scatterplots of expression fold-changes vs. overall expression measures for pairs of lanes
representing different combinations of biological samples, library preparations, and flow-cells. Panel (a):
Replicate Brain lanes in flow-cell F3. Panel (b): Brain lanes in flow-cell F3 vs. F2. Panel (c): UHR library
preparation S4 vs. S3 lanes in flow-cell F4. Panel (d): UHR vs. Brain lanes in flow-cell F2. Only the
qRT-PCR genes are individually plotted as a representative sample of genes; for comparison, these genes are
plotted over the bivariate Gaussian kernel density smoothers of the MD-plots for all UI genes that contain
reads in any lane of either the MAQC-2 or MAQC-3 datasets. Expression measures were normalized by total
lane counts and then multiplied by 106 to make the scales commensurate when comparing different numbers
of lanes.
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Figure SS7: MAQC-3: Goodness-of-fit of ROI-level Poisson model for replicate lanes, by count. The mul-
tiplicative Poisson model of Equation (1) is fit to each UI gene within library preparation. Goodness-of-fit
statistics are computed and displayed in uniform quantile-quantile plots for the corresponding nominal χ

2

p-values. The QQ-plots are stratified according to UI gene counts averaged over all fourteen lanes. The count
strata partition the UI genes into nine groups of approximately the same cardinality, but vastly different
count ranges.
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(a) MAQC-2 (b) MAQC-3

Figure SS8: Count-stratified QQ-plots comparing the fit of log-linear regression models with various formu-
lations of the biological and experimental effect parameters. The log-linear regression model of Equation (1)
is fit to each UI gene for various formulations of the biological and experimental effect parameters, λ and θ,
respectively (Table S4). Models are compared with log-likelihood ratio statistics and the associated nominal
χ

2
p-values are displayed in uniform quantile-quantile plots. The QQ-plots are stratified according to UI

gene counts averaged over all fourteen lanes. The count strata partition the UI genes into nine groups of
approximately the same cardinality, but vastly different count ranges.
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Figure SS9: Distribution of qRT-PCR p-values for genes called DE and non-DE. Density plots of the
bonferroni-corrected p-values from qRT-PCR data, with genes separated by whether the gene was called
DE, non-DE or neither (‘no call’).
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Figure SS10: MAQC-2: Impact of phi X calibration, base-calling. Pseudo-color image of the per cycle and
per lane percentage (out of 11,244,980–13,680,634 clusters per lane) of base-calls that differ between phi X
calibration and auto-calibration.
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Figure SS11: MAQC-2: Impact of phi X calibration, base-calling. Pseudo-color image of the per cycle and per
lane joint distribution of base-calls with and without phi X calibration. Each cell in the image corresponds to
the percentage (out of 11,244,980–13,680,634 clusters per lane) of base-call pairs of a given type, at a given
cycle and in a given lane, e.g., an (A,C) pair corresponds to a base-call of ’A’ with phi X and ’C’ without
phi X calibration. A base-call of ’N’ is returned when all four fluorescence intensities are zero. Concordant
base-calls are not displayed, as they dwarf discrepant calls.
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Figure SS12: MAQC-2: Impact of phi X calibration, quality-scoring. Plots of per-cycle average quality scores
(out of 11,244,980–13,680,634 clusters per lane) with and without phi X calibration. Panel (a): Average
quality scores are averaged across seven lanes for flow-cells F2 and F3. Panel (b): Average difference of
quality scores between phi X calibration and auto-calibration for fourteen lanes.
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(a) Brain: p-values (b) UHR vs. Brain: p-values

(c) Brain: p-values vs. counts (d) UHR vs. Brain: p-values vs. counts

Figure SS13: MAQC-2: Impact of phi X calibration, biological effect estimation. Panel (a): Empirical
cumulative function of permutation p-values for differences in Brain effects λ̂Brain,j without vs. with phi X
calibration. Panel (b): Empirical cumulative distribution function of permutation p-values for differences in
biology effects λ̂UHR,j − λ̂Brain,j , i.e., expression log-ratios, without vs. with phi X calibration. Panel (c) :
Bivariate binned Gaussian kernel density smoother of permutation p-values for differences in Brain effects
λ̂Brain,j vs. read counts summed over the seven Brain lanes. Panel (d): Bivariate binned Gaussian kernel
density smoother of permutation p-values for differences in biology effects λ̂UHR,j − λ̂Brain,j vs. read counts
summed over all fourteen lanes. Estimates of (absolute and relative) biological effects are based on GLM
with only biological effects: λ̂a,j = log(X+a,j/X+a,·), a ∈ {Brain, UHR}, for the UI genes having non-zero
counts with both types of calibration for each of the fourteen lanes. Two-sided p-values are computed based
on 1, 000 random permutations of the phi X and non-phi X sets of read counts for each of the fourteen lanes
(from the possible 214 = 16, 384), with a floor of 2/1, 000.
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(a) All UI genes (b) qRT-PCR genes

Figure SS14: MAQC-2: Impact of phi X calibration, differential expression statistics – Purity-filtered perfectly
matching reads (FPM). Mean-difference scatterplots of DE statistics without vs. with phi X calibration.
Panel (a): All UI genes. Panel (b): genes assayed by qRT-PCR. DE statistics are t-statistics for differences
of biological effects λUHR,j −λBrain,j , based on GLM adjusting for flow-cell effects (1+bio+fc, Equations (1).
Genes are declared differentially expressed if their nominal Bonferroni Gaussian adjusted p-values do not
exceed 0.05. Discrepant DE calls are highlighted using red and green plotting symbols: red for DE according
to phi X base-called lanes only and green for DE according to non-phi X base-called lanes only.
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